

Game Theory Course: Jackson, Leyton-Brown & Shoham

Game Theory Course: Jackson, Leyton-Brown & Shoham

• UN security council: 15 members.

• UN security council: 15 members.

• 5 permanent members: China, France, Russia, UK, US

• UN security council: 15 members.

• 5 permanent members: China, France, Russia, UK, US

• 10 temporary members

• UN security council: 15 members.

• 5 permanent members: China, France, Russia, UK, US

• 10 temporary members

• 5 permanent members can veto resolutions.

• UN security council: represent it as a cooperative game.

• UN security council: represent it as a cooperative game.

• China, France, Russia, UK, US are labeled $\{1, 2, 3, 4, 5\}$

•
$$v(S) = 1$$
 if $\{1, 2, 3, 4, 5\} \subset S$ and $\#S \ge 8$,

• v(S) = 0 otherwise.

- Baveslan Nomal-form actions Transford the common and restance of the common action restanc
- Let's start with a three-player game that has a similar structure:

• Let's start with a three-player game that has a similar structure:

• 1 permanent member with a veto and 2 temporary members

• Let's start with a three-player game that has a similar structure:

• 1 permanent member with a veto and 2 temporary members

•
$$v(S) = 1$$
 if $1 \in S$ and $\#S \ge 2$,

• v(S) = 0 otherwise.

• v(S) = 1 if $1 \in S$ and $\#S \ge 2$, v(S) = 0 otherwise.

• v(S) = 1 if $1 \in S$ and $\#S \ge 2$, v(S) = 0 otherwise.

• Core:
$$x_1 + x_2 \ge 1$$
, $x_1 + x_3 \ge 1$, $x_1 + x_2 + x_3 = 1$, $x_i \ge 0$.

• v(S) = 1 if $1 \in S$ and $\#S \ge 2$, v(S) = 0 otherwise.

• Core:
$$x_1 + x_2 \ge 1$$
, $x_1 + x_3 \ge 1$, $x_1 + x_2 + x_3 = 1$, $x_i \ge 0$.

• Core: $x_1 = 1$, $x_2 = 0$, $x_3 = 0$.

• v(S) = 1 if $1 \in S$ and $\#S \ge 2$, v(S) = 0 otherwise.

• v(S) = 1 if $1 \in S$ and $\#S \ge 2$, v(S) = 0 otherwise.

$$\mathsf{Value}_i = \frac{1}{N!} \sum_{S \subseteq N \setminus \{i\}} |S|! (|N| - |S| - 1)! \Big[v(S \cup \{i\}) - v(S) \Big].$$

• v(S) = 1 if $1 \in S$ and $\#S \ge 2$, v(S) = 0 otherwise.

Shapley

$$\mathsf{Value}_{i} = \frac{1}{N!} \sum_{S \subseteq N \setminus \{i\}} |S|! (|N| - |S| - 1)! \Big[v(S \cup \{i\}) - v(S) \Big].$$

• 1's value: $v(\{1,2,3\})-v(\{2,3\})=1$ weighted by 2/6, $v(\{1,2\})-v(\{2\})=1$ weighted by 1/6, $v(\{1,3\})-v(\{3\})=1$ weighted by 1/6

• v(S) = 1 if $1 \in S$ and $\#S \ge 2$, v(S) = 0 otherwise.

$$\mathsf{Value}_{i} = \frac{1}{N!} \sum_{S \subseteq N \setminus \{i\}} |S|! (|N| - |S| - 1)! \Big[v(S \cup \{i\}) - v(S) \Big].$$

- 1's value: $v(\{1,2,3\})-v(\{2,3\})=1$ weighted by 2/6, $v(\{1,2\})-v(\{2\})=1$ weighted by 1/6, $v(\{1,3\})-v(\{3\})=1$ weighted by 1/6
- 2's value: $v(\{1,2\})-v(\{1\})=1,$ weighted by I/6

• v(S) = 1 if $1 \in S$ and $\#S \ge 2$, v(S) = 0 otherwise.

$$\mathsf{Value}_{i} = \frac{1}{N!} \sum_{S \subseteq N \setminus \{i\}} |S|! (|N| - |S| - 1)! \Big[v(S \cup \{i\}) - v(S) \Big].$$

- 1's value: $v(\{1,2,3\})-v(\{2,3\})=1$ weighted by 2/6, $v(\{1,2\})-v(\{2\})=1$ weighted by 1/6, $v(\{1,3\})-v(\{3\})=1$ weighted by 1/6
- 2's value: $v(\{1,2\})-v(\{1\})=1,$ weighted by 1/6
- 3's value: $v(\{1,3\})-v(\{1\})=1,$ weighted by I/6

• v(S) = 1 if $1 \in S$ and $\#S \ge 2$, v(S) = 0 otherwise.

$$\mathsf{Value}_{i} = \frac{1}{N!} \sum_{S \subseteq N \setminus \{i\}} |S|! (|N| - |S| - 1)! \Big[v(S \cup \{i\}) - v(S) \Big].$$

- 1's value: $v(\{1,2,3\})-v(\{2,3\})=1$ weighted by 2/6, $v(\{1,2\})-v(\{2\})=1$ weighted by 1/6, $v(\{1,3\})-v(\{3\})=1$ weighted by 1/6
- 2's value: $v(\{1,2\})-v(\{1\})=1,$ weighted by 1/6
- 3's value: $v(\{1,3\})-v(\{1\})=1,$ weighted by I/6

• Shapley Value:
$$x_1 = 2/3$$
, $x_2 = 1/6$, $x_3 = 1/6$.

A way to the Shapley Value:

Cooperative Games

• Model complex multilateral bargaining and coalition formation, without specifying the particulars of a normal or extensive form

- Core: Based on coalitional threats each coalition must get at least what it can generate alone
- Shapley Value: based on marginal contributions: what does each player contribute to each possible coalition.
- Other solutions...